Isadora Antoniano-Villalobos

Ca’ Foscari University of Venice, Italy

Joint work with:
Cristiano Villa, Newcastle University, UK Stephen G. Walker, University of Texas at Austin, USA

LETS START AT THE VERY BEGINNING...

The starting point is a parameter of interest, say $\theta \in \Theta \subset \mathbb{R}^{d}$, indexing a family of probability distributions $f(x \mid \theta)$.

The Bayesian framework requires the specification of a prior $q(\theta)$ supported on Θ.

In general, there are two options:

- Elicit the prior on the basis of prior information
- Use an objective prior, in the absence of information

Common objective approaches for the definition of priors are:

- Jeffreys prior
- Reference prior

Both of these depend on $f(x \mid \theta)$

LETS START AT THE VERY BEGINNING...

Common objective prior approaches have known drawbacks and limitations:

- While they tend to be proper for bounded parameter spaces, e.g. $\Theta=(0,1)$, they are often improper for $\Theta=(0, \infty)$ and $\Theta=(-\infty, \infty)$.
- For large or complex models, it is difficult to check posterior properness.
- Even for not-so-large models, prior independence is often assumed, to avoid issues when defining multivariate objective priors

OUR AIM: Finding objective priors for multiple parameters which are proper, heavy tailed and do not require an independence assumption

First ingredient: DIfferential equations

Objectivity and scoring rules

Fabrizio Leisen, Cristiano Villa, Stephen G. Walker (2020). On a class of objective priors from scoring rules (with discussion). Bayesian Analysis 15, 1345-1523

IDEA: For $\Theta \subset \mathbb{R}$, define the prior as the solution to the differential equation

$$
S\left(q, q^{\prime}, q^{\prime \prime}\right)=0
$$

where

- S is a scoring rule defined as a a weighted sum of the log-score and the Hyvärinen score
- q is the density of a possible prior for θ with q^{\prime} and $q^{\prime \prime}$ the first two derivatives

The resulting prior has some interesting properties:

- It depends on Θ but not on $f(x \mid \theta)$
- By design, it is convex, proper, decreasing (and other desirable features)
- It minimizes a particular information criterion

SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Divergences, Informations and Scores are connected:

$$
D(p, q)=I(p)+\int p S(q)
$$

For example:

- Kullback-Leibler divergence, Shannon entropy and log-score

$$
\int p \log (p / q)=p \log p+\int p(-\log q)
$$

- Fisher Information divergence, Fisher information and Hyvärinen score

$$
\int p\left(p^{\prime} / p-q^{\prime} / q\right)^{2}=\int\left(p^{\prime} / p\right)^{2}+\int p\left[2 q^{\prime \prime} / q-\left(q^{\prime} / q\right)^{2}\right]
$$

SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Proper scoring rules from Bregman divergences

Matthew Parry, M., A. Philip Dawid, Steffen Lauritzen (2012). Proper local scoring rules.
Annals of Statistics 40, 561-592

Idea: Exploit the relation between D, I and S to define new scoring rules by choosing different divergences. In particular, considering the family of Bregman divergences:

$$
D(p, q)=\int B_{\phi}(p, q) ; \quad B_{\phi}(p, q)=\phi(p)-\phi(q)-\phi_{q}(q)(p-q)
$$

for a convex function $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$, where $\phi_{q}(q)$ denotes the derivative $\frac{d \phi(q)}{d q}$
For example:

- If $\phi(u)=u \log u, B_{\phi}$ is the Kullback-Leibler divergence
- If $\phi(u)=u^{2}, B_{\phi}$ is the L_{2} norm

Third ingredient: Priors derived from Bregman 2-Local scores

Objective priors from scoring rules derived from 2-dimensional Bregman divergences

Stephen G. Walker, Cristiano Villa (2021). An Objective Prior from a Scoring Rule. Entropy 23, 833.

Idea: Consider a 2-dimensional Bregman divergence:

$$
D(\mathbf{p}, \mathbf{q})=\int B_{\phi}(\mathbf{p}, \mathbf{q}) ; \quad B_{\phi}(\mathbf{p}, \mathbf{q})=\phi(\mathbf{p})-\phi(\mathbf{q})-\phi_{q}(\mathbf{q})(p-q)-\phi_{q_{\theta}}(\mathbf{q})\left(p_{\theta}-q_{\theta}\right)
$$

for a convex function $\phi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$, where $\mathbf{p}=\left(p, p_{\theta}\right), \mathbf{p}=\left(q, q_{\theta}\right)$,

$$
q_{\theta}(\theta)=\frac{d q(\theta)}{d \theta} ; \quad \phi_{q}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q} ; \quad \phi_{q_{\theta}}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q_{\theta}}
$$

For example:

- If $\phi(u, v)=v^{2} / u, B_{\phi}$ is the Fisher information divergence
\rightarrow In general, consider, $\phi(u, v)=u \alpha(v / u)$, which is convex whenever $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ is convex

Third ingredient: Priors derived from Bregman 2-Local scores

After some manipulation and assuming boundary conditions at the integration limits, the relation between D, I and S can be recovered:

$$
\int B_{\phi}(\mathbf{p}, \mathbf{q})=\int p \alpha\left(p_{\theta} / p\right)+\int p\left[\frac{d}{d x} \alpha_{u}\left(q_{\theta} / q\right)-\alpha\left(q_{\theta} / q\right)+\left(q_{\theta} / q\right) \alpha_{u}\left(q_{\theta} / q\right)\right]
$$

where α_{u} denotes the derivative $\frac{d \alpha(u)}{d u}$
The score $S(\mathbf{q})=S\left(q, q_{\theta}, q_{\theta \theta}\right)$

$$
\begin{aligned}
S(\mathbf{q}) & =\frac{d}{d \theta} \alpha_{u}\left(q_{\theta} / q\right)-\alpha\left(q_{\theta} / q\right)+\left(q_{\theta} / q\right) \alpha_{u}\left(q_{\theta} / q\right) \\
& =\alpha_{u} u\left(q_{\theta} / q\right) \frac{q q_{\theta \theta}-q_{\theta}^{2}}{q^{2}}-\alpha\left(q_{\theta} / q\right)+\left(q_{\theta} / q\right) \alpha_{u}\left(q_{\theta} / q\right)
\end{aligned}
$$

is called an order-2 local score or 2-local score, since it depends on the distribution only through the density q and its first two derivatives q_{θ} and $q_{\theta \theta}$, evaluated at the local point θ
\rightarrow An objective prior for θ is defined as the solution to the differential equation

$$
S\left(q, q_{\theta}, q_{\theta \theta}\right)=0
$$

Third ingredient: Priors derived from Bregman 2-Local scores

Example: Let $\alpha(u)=u^{-2}$, thus $\phi(\mathbf{p})=p \alpha\left(p_{\theta} / p\right)=p^{3} / p_{\theta}^{2}$ and

$$
S(\mathbf{q})=3\left(\frac{q}{q_{\theta}}\right)^{2}\left[\frac{2 q q_{\theta \theta}}{q_{\theta}^{2}}-3\right]
$$

Solving $S(\mathbf{q})=0$ results in a prior

$$
q(\theta)=\frac{a}{(a+\theta)^{2}}, \quad \theta \in[0, \infty)
$$

\rightarrow This is a Lomax distribution with scale $a>0$ and shape $k=1$

- Heavy-tailed distribution related to the generalized Pareto
- $\mathbb{E}_{q}[\theta]=\infty$
- $q(\theta)$ is decreasing and convex
- Invariance to the transformation $t(\theta)=1 / \theta$ holds iif $a=1$
\rightarrow A prior with similar properties for $\theta \in \Theta=(-\infty, \infty)$ can be obtained through symmetrization:

$$
q(\theta)=\frac{a}{2(a+|\theta|)^{2}}
$$

OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

We begin with the prior for $\theta \in[0, \infty)$:

$$
q(\theta)=\frac{a}{(a+\theta)^{2}} \quad \text { i.e. } \theta \sim L(a, 1)
$$

and consider a second parameter $\tau \in[0, \infty)$
\rightarrow Definition of the joint prior for $(\theta, \tau) \in[0, \infty)^{2}$ requires the definition of $q(\tau \mid \theta)$:

- If the support of τ is $[0, \infty)$ for all $\theta, q(\tau \mid \theta)$ should also be a Lomax distribution
- If a priori independence is not assumed, the parameters of $q(\tau \mid \theta)$ may depend on θ, thus

$$
q(\tau \mid \theta)=\frac{\tilde{a}(\theta)^{\tilde{k}(\theta)} \tilde{k}(\theta)}{(\tilde{a}(\theta)+\tau)^{\tilde{k}(\theta)+1}} \quad \text { i.e. } \tau \mid \theta \sim L(\tilde{a}(\theta), \tilde{k}(\theta))
$$

- The joint prior should not depend on the order in which the two parameters are considered. In other words,

$$
q(\theta) q(\tau \mid \theta)=q(\tau) q(\theta \mid \tau)
$$

OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

By symmetry, τ and θ should have the same marginal distribution and the following equality should hold

$$
\frac{a}{(a+\theta)^{2}} \frac{\tilde{a}(\theta)^{\tilde{k}(\theta)} \tilde{k}(\theta)}{(\tilde{a}(\theta)+\tau)^{\tilde{k}(\theta)+1}}=\frac{\tilde{a}}{(\tilde{a}+\tau)^{2}} \frac{a(\tau)^{k(\tau)} k(\tau)}{(a(\tau)+\theta)^{k(\tau)+1}}
$$

This is achieved iif $k(\tau)=\tilde{k}(\theta)=2, a=\tilde{a}, \tilde{a}(\theta)=a+\theta$ and $a(\tau)=a+\tau$.
The joint prior for $(\theta, \tau) \in[0, \infty)^{2}$ is therefore

$$
q(\theta, \tau)=\frac{2 a}{(a+\theta+\tau)^{3}}
$$

\rightarrow This is a bivariate Lomax distribution with scale $a>0$ and shape $k=1$

- Heavy-tailed distribution related to the bivariate generalized Pareto
- $\mathbb{E}_{q}[\theta]=\mathbb{E}_{q}[\tau]=\infty$ but $\mathbb{E}_{q}[\theta]=a+\theta, \mathbb{E}_{q}[\tau]=a+\tau$
- $q(\theta, \tau)$ is decreasing and convex
- Invariance to the transformation $t(\theta, \tau)=(1 / \theta, 1 / \tau)$ holds iif $a=1$
\rightarrow A prior with similar properties for $(\theta, \tau) \in \Theta=(-\infty, \infty) \times[0, \infty)$ can be obtained through symmetrization:

$$
q(\theta, \tau)=\frac{a}{(a+|\theta|+\tau)^{2}}
$$

Prior derivation from Bregman 2-Local scores

Consider a 3-dimensional Bregman divergence:

$$
\begin{gathered}
D(\mathbf{p}, \mathbf{q})=\int B_{\phi}(\mathbf{p}, \mathbf{q}) \\
B_{\phi}(\mathbf{p}, \mathbf{q})=\phi(\mathbf{p})-\phi(\mathbf{q})-\phi_{q}(\mathbf{q})(p-q)-\phi_{q_{\theta}}(\mathbf{q})\left(p_{\theta}-q_{\theta}\right)-\phi_{q_{\tau}}(\mathbf{q})\left(p_{\tau}-q_{\tau}\right)
\end{gathered}
$$

for a convex function $\phi: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}$, where $\mathbf{p}=\left(p, p_{\theta}, p_{\tau}\right), \mathbf{p}=\left(q, q_{\theta}, q_{\tau}\right)$,

$$
\begin{gathered}
q_{\theta}(\theta, \tau)=\frac{\partial q(\theta, \tau)}{\partial \theta} ; \quad q_{\tau}(\theta, \tau)=\frac{\partial q(\theta, \tau)}{d \tau} ; \\
\phi_{q}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q} ; \quad \phi_{q_{\theta}}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q_{\theta}} ; \quad \phi_{q_{\tau}}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q_{\tau}}
\end{gathered}
$$

Prior derivation from Bregman 2-Local scores

The resulting bivariate 2-local score is
$S(\mathbf{q})=-\phi_{q}(\mathbf{q})+\frac{\partial \phi_{q_{\theta}}(\mathbf{q})}{\partial \theta}+\frac{\partial \phi_{q_{\tau}}(\mathbf{q})}{\partial \tau}=4\left(\frac{q}{q_{\theta}}\right)^{3}\left[\frac{3 q q_{\theta \theta}}{q_{\theta}^{2}}-4\right]+4\left(\frac{q}{q_{\tau}}\right)^{3}\left[\frac{3 q q_{\tau \tau}}{q_{\tau}^{2}}-4\right]$

Solving $S(\mathbf{q})=0$, under symmetry conditions, results in a prior

$$
q(\theta, \tau)=\frac{2 a}{(a+\theta+\tau)^{3}}
$$

\rightarrow Once again, this is a bivariate Lomax distribution with scale $a>0$ and shape $k=1$:

$$
(\theta, \tau) \sim L_{2}(a, k)
$$

IN DIMENSION $d \geq 2$

In general, for $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right) \in[0, \infty)^{d}$ we consider the Bregman divergence of dimension $d+1$ induced by

$$
B_{\phi}(\mathbf{p}, \mathbf{q})=\phi(\mathbf{p})-\phi(\mathbf{q})-\phi_{q}(\mathbf{q})(p-q)-\sum_{i=1}^{d} \phi_{q_{i}}(\mathbf{q})\left(p_{i}-q_{i}\right)
$$

for a convex function $\phi: \mathbb{R}_{+}^{d+1} \rightarrow \mathbb{R}$, where $\mathbf{p}=\left(p, p_{1}, \ldots, p_{d}\right), \mathbf{p}=\left(q, q_{1}, \ldots, q_{d}\right)$,

$$
q_{i}(\boldsymbol{\theta})=\frac{\partial q(\boldsymbol{\theta})}{\partial \theta_{i}} ; \quad \phi_{q}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q} ; \quad \phi_{q_{i}}(\mathbf{q})=\frac{\partial \phi(\mathbf{q})}{\partial q_{i}}
$$

We let

$$
\phi(\mathbf{p})=p \alpha\left(\frac{p_{1}}{p}, \ldots \frac{p_{d}}{p}\right)
$$

for

$$
\alpha(\mathbf{u})=\sum_{i=1}^{d} u_{i}^{-(d+1)} ; \quad \mathbf{u}=\left(u_{1}, \ldots, u_{d}\right)
$$

IN DIMENSION $d \geq 2$

The resulting multivariate 2-local score is

$$
S(\mathbf{q})=-\phi_{q}(\mathbf{q})+\sum_{i=1}^{d} \frac{\partial \phi_{q_{i}}(\mathbf{q})}{\partial \theta_{i}}=(d+2) \sum_{i=1}^{d}\left(\frac{q}{q_{i}}\right)^{d+1}\left[\frac{(d+1) q q_{i i}}{q_{i}^{2}}-(d+2)\right]
$$

where

$$
q_{i i}(\theta)=\frac{\partial^{2} q(\theta)}{\partial \theta_{i}^{2}}
$$

Solving $S(\mathbf{q})=0$ we obtain the joint prior for $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right) \in[0, \infty)^{d}$,

$$
q(\boldsymbol{\theta})=\frac{d a}{\left(a+\sum_{i=1}^{d} \theta_{i}\right)^{d+1}}
$$

\rightarrow This is a multivariate Lomax distribution with scale $a>0$ and shape $k=1$:

$$
\boldsymbol{\theta} \sim L_{d}(a, k)
$$

In DIMENSION $d \geq 2$

The same prior can be obtained by the conditional construction, sequentially deriving $q\left(\theta_{i+1} \mid \theta_{1}, \ldots, \theta_{i}\right)$, and

$$
\theta_{i+1} \mid \theta_{1}, \ldots, \theta_{i} \sim L\left(a+\sum_{j=1}^{i} \theta_{j}, i+1\right)
$$

\rightarrow For a Lomax distribution $L(a, k)$:

- The larger the shape parameter, the "lighter" the tail:

The expectation is finite whenever $k>1$
The variance is finite whenever $k>2$
\rightarrow Intuitively, while the joint prior is heavy tail, it does not assign "too much" mass on the tails of the multivariate distribution

The joint prior for $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right) \in(-\infty, \infty)^{r} \times[0, \infty)^{d-r}$ can be obtained by symmetrization:

$$
q(\theta)=\frac{d a}{2^{r}\left(a+\sum_{i=1}^{r}\left|\theta_{i}\right|+\sum_{i=r+1}^{d} \theta_{i}\right)^{d+1}}
$$

EXAMPLE 1: WEIBULL DISTRIBUTION

We consider $X \sim \operatorname{Weibull}(\theta, \beta)$ and draw 250 independent samples of size n for $\theta=1$ and $\beta=\{0.5,1,100\}$ (see Sun, 1997). We compare our Lomax prior with the reference prior via relative MSE with respect to the posterior mean and coverage for 95% credible intervals

$\mathrm{n}=30$	MSE - β				MSE - θ	$\begin{gathered} \beta=0.5 \\ 3.13 \\ 2.59 \end{gathered}$	$\begin{aligned} & \beta=1 \\ & 3.13 \\ & 2.61 \end{aligned}$	$\begin{gathered} \beta=10 \\ 3.12 \\ 2.69 \end{gathered}$
		$\beta=0.5$	$\beta=1$	$\beta=10$				
	Reference	3.92	3.90	3.91				
	Lomax	3.33	3.27	3.21				
	COV - β				COV - θ			
		$\beta=0.5$	$\beta=1$	$\beta=10$		$\beta=0.5$	$\beta=1$	$\beta=10$
	Reference	0.90	0.91	0.91		0.91	0.92	0.91
	Lomax	0.91	0.91	0.90		0.95	0.96	0.96
$\mathrm{n}=100$	MSE - β				MSE - θ			
		$\beta=0.5$	$\beta=1$	$\beta=10$		$\beta=0.5$	$\beta=1$	$\beta=10$
	Reference	1.85	1.86	1.94		1.36	1.37	1.37
	Lomax	1.77	1.75	1.76		1.29	1.29	1.30
	COV - β				COV - θ			
		$\beta=0.5$	$\beta=1$	$\beta=10$		$\beta=0.5$	$\beta=1$	$\beta=10$
	Reference	0.94	0.95	0.94		0.94	0.93	0.94
	Lomax	0.93	0.93	0.92		0.95	0.94	0.94

Example 1: Weibull distribution

Single sample results on real data: $n=19$ times to breakdown (minutes) of an insulating fluid between electrodes at a voltage of 34 KV (see Ellah, 2012)
\rightarrow Observations:

0.96	4.15	0.19	0.78	8.01	31.75	7.35	6.50	8.27	33.91
32.52	3.16	4.85	2.78	4.67	1.31	12.06	36.71	72.89	

\rightarrow Posterior summaries:

	Reference			Lomax		
	Mean	Variance	95\% C.I.	Mean	Variance	95\% C.I.
θ	0.8	0.02	$(0.55,1.10)$	0.73	0.02	$(0.48,1.02)$
β	16.84	44.93	$(8.51,31.89)$	11.11	15.08	$(5.07,20.36)$

\rightarrow Maximum likelihood estimates: $\hat{\theta}=0.77$ and $\hat{\beta}=12.22$

Example 2: Linear Regression

We consider 250 independent samples of size $n=100$ from a linear regression model with two covariates, coefficients $\beta=(20,10,-1)$ and variance $\sigma^{2}=2$. We compare our Lomax prior with a vague prior and Zelner's g prior via MSE with respect to the maximum a posteriori and coverage for 95% credible intervals

	MSE			COV		
Parameter	Lomax	Vague	Zellner's g	Lomax	Vague	Zellner's g
β_{0}	0.998	0.998	0.998	0.95	0.94	0.95
β_{1}	1.000	1.000	1.000	0.97	0.96	0.97
β_{2}	1.001	1.002	1.001	0.97	0.98	0.98
σ^{2}	1.098	1.095	1.094	0.93	0.92	0.92

EXAmple 2: LINEAR REGRESSION

Single sample results on simulated data: sample of size $n=100$ from the linear regression model with intercept $\beta_{0}=20$, coefficients $\beta_{1}=10$ and $\beta_{2}=-1$, and variance $\sigma^{2}=2$

Posterior histograms:

Posterior summary:

	Median	95% C.I.
β_{0}	20.15	$(19.84,20.47)$
β_{1}	10.05	$(9.96,10.14)$
β_{2}	-1.02	$(-1.10,-0.94)$
σ^{2}	2.41	$(1.83,3.26)$

Thank you!

References

James O. Berger, José M. Bernardo, and Dongchu Sun. The formal definition of reference priors. The Annals of Statistics, 37:905-938, 2009.
Ahmed H.A. Ellah. Bayesian and non-bayesian estimation of the inverse weibull model based on generalized order statistics. Intelligent Information Management, 4:23-31, 2012.
Dennis V. Lindley and Nozer D. Singpurwalla. Multivariate distributions for the life lengths of components of a system sharing a common environment. Journal of Applied Probability, 23 (2):418-431, 1986.

Tapan Kumar Nayak. Multivariate lomax distribution: Properties and usefulness in reliability theory. Journal of Applied Probability, 24(1):170-177, 1987.
Matthew Parry, A. Philip Dawid, and Steffen Lauritzen. Proper local scoring rules. The Annals of Statistics, 40(1):561-592, 2012.
Dongchu Sun. A note on noninformative priors for weibull distributions. Journal of Statistical Planning and Inference, 61:319-338, 1997.
Stephen G. Walker and Cristiano Villa. An objective prior from a scoring rule. Entropy, 23(7), 2021.
A. Zellner. On Assessing Prior Distributions and Bayesian Regression Analysis with g Prior Distributions. In Goel, P.; Zellner, A. (eds.). Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. Studies in Bayesian Econometrics and Statistics. Vol. 6., pages 233-243, 1986.

