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LETS START AT THE VERY BEGINNING...

The starting point is a parameter of interest, say § € © C R, indexing a family of probability
distributions f(x|6).

The Bayesian framework requires the specification of a prior g() supported on ©.
In general, there are two options:

® Elicit the prior on the basis of prior information

® Use an objective prior, in the absence of information

Common objective approaches for the definition of priors are:

® Jeffreys prior

® Reference prior
Both of these depend on f(x|6)
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LETS START AT THE VERY BEGINNING...

Common objective prior approaches have known drawbacks and limitations:

® While they tend to be proper for bounded parameter spaces, e.g. © = (0, 1), they are often
improper for © = (0, c0) and © = (—00, ).

® For large or complex models, it is difficult to check posterior properness.

® Even for not-so-large models, prior independence is often assumed, to avoid issues when
defining multivariate objective priors

OUR AIM: Finding objective priors for multiple parameters which are proper, heavy tailed and
do not require an independence assumption
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FIRST INGREDIENT: DIFFERENTIAL EQUATIONS

Objectivity and scoring rules

Fabrizio Leisen, Cristiano Villa, Stephen G. Walker (2020). On a class of objective priors from
scoring rules (with discussion). Bayesian Analysis 15, 1345-1523

IDEA: For © C R, define the prior as the solution to the differential equation

S(q.9.q9") =0,
where

® Sisascoring rule defined as a a weighted sum of the log-score and the Hyviirinen score

® qis the density of a possible prior for § with @’ and q” the first two derivatives

The resulting prior has some interesting properties:
® It depends on © but not on f(x|6)
® By design, it is convex, proper, decreasing (and other desirable features)

® [t minimizes a particular information criterion
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SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Divergences, Informations and Scores are connected:

D(p. q) = I(p) + / pS(a)

For example:

® Kullback-Leibler divergence, Shannon entropy and log-score

/plog(p/q) =plogp+/p(flogq)

® Fisher Information divergence, Fisher information and Hyvérinen score

/p(p’/p— q/qy = /(p’//o)2 +/p[2q”/q— (q'/9)%
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SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Proper scoring rules from Bregman divergences

Matthew Parry, M., A. Philip Dawid, Steffen Lauritzen (2012). Proper local scoring rules.
Annals of Statistics 40, 561-592

Idea: Exploit the relation between D, [ and S to define new scoring rules by choosing different
divergences. In particular, considering the family of Bregman divergences:

D(p,q) = / Bs(p,q);  Bys(p, q) = ¢(p) — ¢(q) — ¢q(q)(p — Q)

for a convex function ¢ : R, — R, where ¢4(q) denotes the derivative %ﬂl

For example:
e If ¢(u) = ulog u, B, is the Kullback-Leibler divergence
o If ¢(u) = U?, B, is the Lp norm
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THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

Objective priors from scoring rules derived from 2-dimensional Bregman divergences

Stephen G. Walker, Cristiano Villa (2021). An Objective Prior from a Scoring Rule. Entropy 23,
833.

Idea: Consider a 2-dimensional Bregman divergence:

D(p.q) = / Bs(p.q);  Bs(p.q) = ¢(P) — ¢(d) — dq(A)(p — q) — ¢q, (A)(Ps — o)

for a convex function ¢ : R2 — R, where p = (0, Po), P = (G, Gb),

_9(a).

0
8q s (z)QG(q): ¢(q)

qu

0 =299 )

For example:
e If ¢(u, v) = v2/u, B, is the Fisher information divergence

= In general, consider, ¢(u, v) = U «(v/u), which is convex whenever o : R — R is convex
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THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

After some manipulation and assuming boundary conditions at the integration limits, the
relation between D, [ and S can be recovered:

JBwar= [patnrs [ o] satansa) - ata/a + @/aaaa

do(u)

where oy denotes the derivative =5

The score S(q) = S(g, Go, Gos)

S(a) = %au(%/Q) —a(9e/q) +(9e/q)u(qe/q)

) Qoo %
7

is called an order-2 local score or 2-local score, since it depends on the distribution only
through the density g and its first two derivatives Qp and Qyg, evaluated at the local point 6

= ayl(qo/q) a(qo/q) +(qo/q)u(qe/q)

= An objective prior for 6 is defined as the solution to the differential equation

5(9, Go, o) = 0
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THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

Example: Let o(u) = u~2, thus ¢(p) = pa(pe/p) = p°/p5 and

Solving S(q) = 0 results in a prior

a00) = ¢ a 0 € [0, )

a+6)2’

= This is a Lomax distribution with scale a > 0 and shape k = 1
® Heavy-tailed distribution related to the generalized Pareto
® E4l0] = 0
® q(6) is decreasing and convex

® Invariance to the transformation #(0) = 1/6 holds iif a = 1

=» A prior with similar properties for € © = (—o0, 00) can be obtained through
symmetrization:

a

10 ooy
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OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

We begin with the prior for 6 € [0, o0):

q(6) = ﬁ ie. 6~ L(a1)

and consider a second parameter 7 € [0, co0)

< Definition of the joint prior for (6, 7) € [0, 00)? requires the definition of g(76):
e If the support of 7 is [0, co) for all 8, g(7|6) should also be a Lomax distribution

® If a priori independence is not assumed, the parameters of q(7|0) may depend on 6, thus

a0 k(o)

A0 = o ot

ie. 7|0 ~ L(&(0), k(0))

® The joint prior should not depend on the order in which the two parameters are
considered. In other words,

q(0)q(716) = g(1)q(0|7)
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OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

By symmetry, 7 and 6 should have the same marginal distribution and the following equality
should hold

a_ ae) R( ) a  an) Tk )
(a+0)? (a(6) + r)kO+1 — (&+7)2 (a(r) + O)F
This is achieved iif k() = k(0) =2,a= 3, &(6) =a+0 and a(7) = a+ 7.

The joint prior for (6, 7) € [0, oc)? is therefore

2a
0,7)= ———
q(6.7) (@a+0+71)3
=» This is a bivariate Lomax distribution with scale a > 0 and shape k = 1
® Heavy-tailed distribution related to the bivariate generalized Pareto
Eq[0] = Eq[7] = co but Eq[0] = a+ 0, Eg[r] = a+ 7
q(0, 7) is decreasing and convex

® Invariance to the transformation (6, 7) = (1/6,1/7) holds iif a = 1

=» A prior with similar properties for (0, 7) € © = (—00, 00) X [0, 00) can be obtained through
symmetrization:

a

W= @rer
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PRIOR DERIVATION FROM BREGMAN 2-LOCAL SCORES

Consider a 3-dimensional Bregman divergence:

D(p. q) = / B.(p.q):

Bs(p, q) = ¢(p) — ¢(q) — ¢4(a)(p — Q) — ¢q, (A)(Po — Qo) — bq. (A)(Pr — qr)
for a convex function ¢ : R® — R, where p = (p, Po, p-), P = (g, Go, G),

Qo(0,7) = 80/(8% 7). 9.(0,7) = %
_ 94a). _99(@). _ 9(q)
¢q(q) = oq $ge(Q) = 9gs ¢q.(d) = g,
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PRIOR DERIVATION FROM BREGMAN 2-LOCAL SCORES

The resulting bivariate 2-local score is

_ 060,(@)  99a, (@ _, () [3qq g\ [3gq.-
cn 55 ()

Solving S(q) = 0, under symmetry conditions, results in a prior

2a
A1) = Gy

=» Once again, this is a bivariate Lomax distribution with scale a > 0 and shape k = 1:

0, 7) ~ La(a, k)
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IN DIMENSION d > 2

In general, for @ = (04, ..., 04) € [0, 00)® we consider the Bregman divergence of dimension

d + 1 induced by

d
By(p, Q) = 6(p) — ¢(Q) — ¢a(@)(p — 9) — > _ ¢q(a)(pi — G)
=1

for a convex function ¢ : R%*! — R, where p = (p, 1, ..., Pa), P = (G, Q1 - » Ga),

oy 99(0). _0¢(a). _ 04(a)
G(0) = g5 Gale) = TG dala) = o
We let
P Py
#(p) Pa(p,--- p>
for
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IN DIMENSION d > 2

The resulting multivariate 2-local score is

d
St = s+ 3 20l a2y (2 ) (38 g.g),

i=1 j=1 ql
where
_9%q(9)
60,.2

Solving S(q) = 0 we obtain the joint prior for 6 = (01, ..
da

J d+1
(a +D i 9")

=» This is a multivariate Lomax distribution with scale a > 0 and shape k = 1:

. ,6‘d) € [O, Oo)d,

q(6) =

0~ Ld(as k)
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IN DIMENSION d > 2

The same prior can be obtained by the conditional construction, sequentially deriving
q(0/‘+1 |91, veny 9,’), and

]
9/+1|91,...,‘9/N L(a+20,,i+1)

= For a Lomax distribution L(a, k):
® The larger the shape parameter, the “lighter” the tail:
The expectation is finite whenever kK > 1

The variance is finite whenever kK > 2

=» Intuitively, while the joint prior is heavy tail, it does not assign too much” mass on the tails
of the multivariate distribution

The joint prior for 8 = (61, ..., 64) € (—o0, c0)" X [0, 00)%~" can be obtained by
symmetrization:

q(0) = da :

d+
(a+24 1 |0|+ZI r+1 )
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EXAMPLE 1: WEIBULL DISTRIBUTION

We consider X ~ Weibull(, 5) and draw 250 independent samples of size n for 6 = 1 and
B ={0.5,1,100} (see Sun, 1997). We compare our Lomax prior with the reference prior via
relative MSE with respect to the posterior mean and coverage for 95% credible intervals

n=30 MSE - 3 MSE - 6
B=05 pg=1 B =10 p=05 pg=1 B8 =10
Reference 3.92 3.90 391 3.13 3.13 3.12
Lomax 333 3.27 3.21 2.59 2.61 2.69
COV - COV -6
p=05 pg= B =10 p=05 pg=1 B =10
Reference 0.90 0.91 091 0.91 0.92 091
Lomax 0.91 0.91 0.90 0.95 0.96 0.96
n=100 | MSE- g MSE - 6
=05 pg= B8 =10 p=05 pg=1 B8 =10
Reference 1.85 1.86 1.94 1.36 1.37 1.37
Lomax 1.77 1.75 1.76 1.29 1.29 1.30
COV-p COV -6
p=05 pg= B =10 p=05 pg=1 B =10
Reference 0.94 0.95 0.94 0.94 0.93 0.94
Lomax 0.93 0.93 0.92 0.95 0.94 0.94
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EXAMPLE 1: WEIBULL DISTRIBUTION

Single sample results on real data: n = 19 times to breakdown (minutes) of an insulating fluid
between electrodes at a voltage of 34 KV (see Ellah, 2012)

= Observations:

09 415 0.19 078 801 3175 735 6.50 827 3391
3252 316 485 278 4.67 131 12.06 36.71 72.89

=» Posterior summaries:

Reference Lomax
Mean  Variance 95% C.1. Mean  Variance 95% C.1.
0 0.8 0.02 (0.55,1.10) 0.73 0.02 (0.48,1.02)
5 16.84 44.93 (8.51,31.89) 11.11 15.08 (5.07,20.36)

< Maximum likelihood estimates: § = 0.77 and 3 = 12.22
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EXAMPLE 2: LINEAR REGRESSION

We consider 250 independent samples of size n = 100 from a linear regression model with two
covariates, coefficients 8 = (20, 10, —1) and variance o2 = 2. We compare our Lomax prior
with a vague prior and Zelner’s g prior via MSE with respect to the maximum a posteriori and
coverage for 95% credible intervals

MSE cov
Parameter | Lomax Vague Zellner’'sg | Lomax Vague Zellner’s g
Bo 0.998  0.998 0.998 0.95 0.94 0.95
B 1.000  1.000 1.000 0.97 0.96 0.97
B 1.001 1.002 1.001 0.97 0.98 0.98
o? 1.098  1.095 1.094 0.93 0.92 0.92

1. Antoniano-Villalobos

10 September 2022 19/22



EXAMPLE 2: LINEAR REGRESSION

Single sample results on simulated data: sample of size n = 100 from the linear regression
model with intercept 3y = 20, coefficients 51 = 10 and 3> = —1, and variance o?=2

Posterior histograms: Posterior summary:

| Median 95% C.I.

5 S Bo | 20.15  (19.84,20.47)
° B4 10.05  (9.96,10.14)
& N Bo | -1.02  (-1.10,-0.94)
5 . o2 241 (1.83, 3.26)
195 20.0 205 9.9 10.0 101 10.2 103
Bo By
-1.2 -11 -1.0 -0.9 -0.8 ° 2 3 a4 5
B2 o
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THANK YOU!
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