A MULTIDIMENSIONAL OBJECTIVE PRIOR BASED ON SCORING RULES

ISADORA ANTONIANO-VILLALOBOS

Ca' Foscari University of Venice, Italy

Joint work with:

Cristiano VILLA, Newcastle University, UK Stephen G. WALKER, University of Texas at Austin, USA

• • • • • • • • • •

LETS START AT THE VERY BEGINNING...

The starting point is a **parameter of interest**, say $\theta \in \Theta \subset \mathbb{R}^d$, indexing a family of probability distributions $f(x|\theta)$.

The **Bayesian framework** requires the specification of a prior $q(\theta)$ supported on Θ .

In general, there are two options:

- Elicit the prior on the basis of prior information
- Use an objective prior, in the absence of information

Common objective approaches for the definition of priors are:

- Jeffreys prior
- Reference prior

Both of these depend on $f(x|\theta)$

LETS START AT THE VERY BEGINNING...

Common objective prior approaches have known drawbacks and limitations:

- While they tend to be proper for bounded parameter spaces, e.g. Θ = (0, 1), they are often improper for Θ = (0, ∞) and Θ = (-∞, ∞).
- For large or complex models, it is difficult to check posterior properness.
- Even for not-so-large models, prior independence is often assumed, to avoid issues when defining **multivariate objective priors**

OUR AIM: Finding objective priors for multiple parameters which are proper, heavy tailed and do not require an independence assumption

-

イロト 不得 とくほ とくほう

FIRST INGREDIENT: DIFFERENTIAL EQUATIONS

Objectivity and scoring rules

Fabrizio Leisen, Cristiano Villa, Stephen G. Walker (2020). On a class of objective priors from scoring rules (with discussion). *Bayesian Analysis* **15**, 1345–1523

IDEA: For $\Theta \subset \mathbb{R}$, define the prior as the solution to the differential equation

$$S(q,q^{\prime},q^{\prime\prime})=0,$$

where

- *S* is a scoring rule defined as a weighted sum of the log-score and the Hyvärinen score
- q is the density of a possible prior for θ with q' and q'' the first two derivatives

The resulting prior has some interesting properties:

- It depends on Θ but not on $f(x|\theta)$
- By design, it is convex, proper, decreasing (and other desirable features)
- It minimizes a particular information criterion

SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Divergences, Informations and Scores are connected:

$$D(p, q) = I(p) + \int p S(q)$$

For example:

Kullback-Leibler divergence, Shannon entropy and log-score

$$\int p \log(p/q) = p \log p + \int p (-\log q)$$

• Fisher Information divergence, Fisher information and Hyvärinen score

$$\int p(p'/p - q'/q)^2 = \int (p'/p)^2 + \int p[2q''/q - (q'/q)^2]$$

э

ヘロト ヘアト ヘビト ヘビト

Proper scoring rules from Bregman divergences

Matthew Parry, M., A. Philip Dawid, Steffen Lauritzen (2012). Proper local scoring rules. *Annals of Statistics* 40, 561–592

Idea: Exploit the relation between D, I and S to define new scoring rules by choosing different divergences. In particular, considering the family of **Bregman divergences**:

$$D(p,q) = \int B_{\phi}(p,q); \quad B_{\phi}(p,q) = \phi(p) - \phi(q) - \phi_q(q)(p-q)$$

for a convex function $\phi : \mathbb{R}_+ \to \mathbb{R}$, where $\phi_q(q)$ denotes the derivative $\frac{d\phi(q)}{dq}$

For example:

- If $\phi(u) = u \log u$, B_{ϕ} is the Kullback-Leibler divergence
- If $\phi(u) = u^2$, B_{ϕ} is the L_2 norm

Objective priors from scoring rules derived from 2-dimensional Bregman divergences

Stephen G. Walker, Cristiano Villa (2021). An Objective Prior from a Scoring Rule. *Entropy* 23, 833.

Idea: Consider a 2-dimensional Bregman divergence:

$$D(\mathbf{p},\mathbf{q}) = \int B_{\phi}(\mathbf{p},\mathbf{q}); \quad B_{\phi}(\mathbf{p},\mathbf{q}) = \phi(\mathbf{p}) - \phi(\mathbf{q}) - \phi_{q}(\mathbf{q})(\mathbf{p}-\mathbf{q}) - \phi_{q_{\theta}}(\mathbf{q})(\mathbf{p}_{\theta}-\mathbf{q}_{\theta})$$

for a convex function $\phi : \mathbb{R}^2_+ \to \mathbb{R}$, where $\mathbf{p} = (\rho, \rho_{\theta}), \mathbf{p} = (q, q_{\theta}),$

$$q_{\theta}(\theta) = \frac{dq(\theta)}{d\theta}; \quad \phi_q(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial q}; \quad \phi_{q_{\theta}}(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial q_{\theta}}$$

For example:

• If $\phi(u, v) = v^2/u$, B_{ϕ} is the Fisher information divergence

→ In general, consider, $\phi(u, v) = u \alpha(v/u)$, which is convex whenever $\alpha : \mathbb{R} \to \mathbb{R}$ is convex

A D A A B A A B A A

THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

After some manipulation and assuming boundary conditions at the integration limits, the relation between D, I and S can be recovered:

$$\int B_{\phi}(\mathbf{p},\mathbf{q}) = \int p \,\alpha(p_{\theta}/p) + \int p \left[\frac{d}{dx} \alpha_u(q_{\theta}/q) - \alpha(q_{\theta}/q) + (q_{\theta}/q) \alpha_u(q_{\theta}/q) \right],$$

where α_u denotes the derivative $\frac{d\alpha(u)}{du}$

The score $S(\mathbf{q}) = S(q, q_{\theta}, q_{\theta\theta})$

$$\begin{split} S(\mathbf{q}) &= \frac{d}{d\theta} \alpha_u(q_\theta/q) - \alpha(q_\theta/q) + (q_\theta/q)\alpha_u(q_\theta/q) \\ &= \alpha_u u(q_\theta/q) \frac{qq_{\theta\theta} - q_\theta^2}{q^2} - \alpha(q_\theta/q) + (q_\theta/q)\alpha_u(q_\theta/q) \end{split}$$

is called an **order-2 local score** or **2-local score**, since it depends on the distribution only through the density q and its first two derivatives q_{θ} and $q_{\theta\theta}$, evaluated at the local point θ

 \Rightarrow An objective prior for θ is defined as the solution to the differential equation

$$S(q, q_{\theta}, q_{\theta\theta}) = 0$$

I. Antoniano-Villalobos

THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

Example: Let
$$\alpha(u) = u^{-2}$$
, thus $\phi(\mathbf{p}) = p\alpha(p_{\theta}/p) = p^3/p_{\theta}^2$ and

$$S(\mathbf{q}) = 3\left(rac{q}{q_{ heta}}
ight)^2 \left[rac{2q \, q_{ heta heta}}{q_{ heta}^2} - 3
ight]$$

Solving $S(\mathbf{q}) = 0$ results in a prior

$$q(\theta) = \frac{a}{(a+\theta)^2}, \quad \theta \in [0,\infty)$$

 \Rightarrow This is a Lomax distribution with scale a > 0 and shape k = 1

- Heavy-tailed distribution related to the generalized Pareto
- $\mathbb{E}_q[\theta] = \infty$
- $q(\theta)$ is decreasing and convex
- Invariance to the transformation $t(\theta) = 1/\theta$ holds if a = 1

→ A prior with similar properties for $\theta \in \Theta = (-\infty, \infty)$ can be obtained through symmetrization:

$$q(\theta) = \frac{a}{2(a+|\theta|)^2}$$

• • • • • • • • • • • • •

OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

We begin with the prior for $\theta \in [0, \infty)$:

$$q(\theta) = \frac{a}{(a+\theta)^2}$$
 i.e. $\theta \sim L(a, 1)$

and consider a second parameter $\tau \in [0, \infty)$

- → Definition of the joint prior for $(\theta, \tau) \in [0, \infty)^2$ requires the definition of $q(\tau|\theta)$:
 - If the support of τ is $[0, \infty)$ for all θ , $q(\tau|\theta)$ should also be a Lomax distribution
 - If a priori independence is not assumed, the parameters of $q(\tau|\theta)$ may depend on θ , thus

$$q(\tau|\theta) = \frac{\tilde{a}(\theta)^{\tilde{k}(\theta)}\tilde{k}(\theta)}{(\tilde{a}(\theta) + \tau)^{\tilde{k}(\theta)+1}} \quad \text{i.e. } \tau|\theta \sim L\big(\tilde{a}(\theta), \tilde{k}(\theta)\big)$$

• The joint prior should not depend on the order in which the two parameters are considered. In other words,

$$q(\theta)q(\tau|\theta) = q(\tau)q(\theta|\tau)$$

• • • • • • • • • • • •

OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

By symmetry, τ and θ should have the same marginal distribution and the following equality should hold

$$\frac{a}{(a+\theta)^2}\frac{\tilde{a}(\theta)^{k(\theta)}\tilde{k}(\theta)}{(\tilde{a}(\theta)+\tau)^{\tilde{k}(\theta)+1}} = \frac{\tilde{a}}{(\tilde{a}+\tau)^2}\frac{a(\tau)^{k(\tau)}k(\tau)}{(a(\tau)+\theta)^{k(\tau)+1}}$$

This is achieved iff $k(\tau) = \tilde{k}(\theta) = 2$, $a = \tilde{a}, \tilde{a}(\theta) = a + \theta$ and $a(\tau) = a + \tau$.

The joint prior for $(\theta, \tau) \in [0, \infty)^2$ is therefore

$$q(\theta,\tau)=\frac{2a}{(a+\theta+\tau)^3}$$

\Rightarrow This is a **bivariate Lomax distribution** with scale a > 0 and shape k = 1

- Heavy-tailed distribution related to the bivariate generalized Pareto
- $\mathbb{E}_q[\theta] = \mathbb{E}_q[\tau] = \infty$ but $\mathbb{E}_q[\theta] = a + \theta$, $\mathbb{E}_q[\tau] = a + \tau$
- $q(\theta, \tau)$ is decreasing and convex
- Invariance to the transformation $t(\theta, \tau) = (1/\theta, 1/\tau)$ holds iif a = 1

→ A prior with similar properties for $(\theta, \tau) \in \Theta = (-\infty, \infty) \times [0, \infty)$ can be obtained through symmetrization:

$$q(\theta,\tau) = \frac{a}{(a+|\theta|+\tau)^2}$$

イロト イポト イヨト イヨト

10 September 2022

э

11/22

PRIOR DERIVATION FROM BREGMAN 2-LOCAL SCORES

Consider a 3-dimensional Bregman divergence:

$$D(\mathbf{p},\mathbf{q}) = \int B_{\phi}(\mathbf{p},\mathbf{q});$$

 $B_{\phi}(\mathbf{p},\mathbf{q}) = \phi(\mathbf{p}) - \phi(\mathbf{q}) - \phi_{q}(\mathbf{q})(\mathbf{p}-\mathbf{q}) - \phi_{q_{\theta}}(\mathbf{q})(\mathbf{p}_{\theta}-\mathbf{q}_{\theta}) - \phi_{q_{\tau}}(\mathbf{q})(\mathbf{p}_{\tau}-\mathbf{q}_{\tau})$

for a convex function $\phi : \mathbb{R}^3_+ \to \mathbb{R}$, where $\mathbf{p} = (p, p_\theta, p_\tau), \mathbf{p} = (q, q_\theta, q_\tau)$,

$$\begin{aligned} q_{\theta}(\theta,\tau) &= \frac{\partial q(\theta,\tau)}{\partial \theta}; \quad q_{\tau}(\theta,\tau) = \frac{\partial q(\theta,\tau)}{d\tau}; \\ \phi_{q}(\mathbf{q}) &= \frac{\partial \phi(\mathbf{q})}{\partial q}; \quad \phi_{q_{\theta}}(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial q_{\theta}}; \quad \phi_{q_{\tau}}(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial q_{\tau}} \end{aligned}$$

э

PRIOR DERIVATION FROM BREGMAN 2-LOCAL SCORES

The resulting **bivariate 2-local score** is

$$S(\mathbf{q}) = -\phi_q(\mathbf{q}) + \frac{\partial \phi_{q_\theta}(\mathbf{q})}{\partial \theta} + \frac{\partial \phi_{q_\tau}(\mathbf{q})}{\partial \tau} = 4\left(\frac{q}{q_\theta}\right)^3 \left[\frac{3q \, q_{\theta\theta}}{q_\theta^2} - 4\right] + 4\left(\frac{q}{q_\tau}\right)^3 \left[\frac{3q \, q_{\tau\tau}}{q_\tau^2} - 4\right]$$

Solving $S(\mathbf{q}) = 0$, under symmetry conditions, results in a prior

$$q(\theta,\tau) = \frac{2a}{(a+\theta+\tau)^3}$$

 \rightarrow Once again, this is a **bivariate Lomax distribution** with scale a > 0 and shape k = 1:

$$(\theta, \tau) \sim L_2(a, k)$$

・ロト ・日子・ ・ ヨト・

10 September 2022

13/22

I. Antoniano-Villalobos

In dimension $d \ge 2$

In general, for $\theta = (\theta_1, ..., \theta_d) \in [0, \infty)^d$ we consider the **Bregman divergence** of dimension d + 1 induced by

$$B_{\phi}(\mathbf{p},\mathbf{q}) = \phi(\mathbf{p}) - \phi(\mathbf{q}) - \phi_q(\mathbf{q})(\mathbf{p} - q) - \sum_{i=1}^{d} \phi_{q_i}(\mathbf{q})(\mathbf{p}_i - q_i)$$

for a convex function $\phi : \mathbb{R}^{d+1}_+ \to \mathbb{R}$, where $\mathbf{p} = (p, p_1, \dots, p_d), \mathbf{p} = (q, q_1, \dots, q_d)$,

$$q_i(\theta) = \frac{\partial q(\theta)}{\partial \theta_i}; \quad \phi_q(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial q}; \quad \phi_{q_i}(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial q_i}$$

We let

$$\phi(\mathbf{p}) = p\alpha\left(\frac{p_1}{p}, \dots, \frac{p_d}{p}\right)$$

for

$$\alpha(\mathbf{u}) = \sum_{i=1}^{d} u_i^{-(d+1)}; \quad \mathbf{u} = (u_1, \dots, u_d)$$

э

A D > A B > A B > A B >

In dimension $d \ge 2$

The resulting multivariate 2-local score is

$$S(\mathbf{q}) = -\phi_q(\mathbf{q}) + \sum_{i=1}^d \frac{\partial \phi_{q_i}(\mathbf{q})}{\partial \theta_i} = (d+2) \sum_{i=1}^d \left(\frac{q}{q_i}\right)^{d+1} \left[\frac{(d+1)q q_{ii}}{q_i^2} - (d+2)\right],$$

where

$$q_{ii}(\theta) = \frac{\partial^2 q(\theta)}{\partial \theta_i^2}$$

Solving $S(\mathbf{q}) = 0$ we obtain the joint prior for $\theta = (\theta_1, \dots, \theta_d) \in [0, \infty)^d$,

$$q(\theta) = \frac{da}{\left(a + \sum_{i=1}^{d} \theta_i\right)^{d+1}}$$

 \Rightarrow This is a **multivariate Lomax distribution** with scale a > 0 and shape k = 1:

$$\theta \sim L_d(a, k)$$

2

IN DIMENSION $d \ge 2$

The same prior can be obtained by the conditional construction, sequentially deriving $q(\theta_{i+1}|\theta_1, \dots, \theta_i)$, and

$$\theta_{i+1}|\theta_1,\ldots,\theta_i\sim L(a+\sum_{j=1}^l \theta_j,i+1)$$

- \rightarrow For a Lomax distribution L(a, k):
 - The larger the shape parameter, the "lighter" the tail: The expectation is finite whenever k > 1 The variance is finite whenever k > 2

➔ Intuitively, while the joint prior is heavy tail, it does not assign "too much" mass on the tails of the multivariate distribution

The joint prior for $\theta = (\theta_1, ..., \theta_d) \in (-\infty, \infty)^r \times [0, \infty)^{d-r}$ can be obtained by symmetrization:

$$q(\theta) = \frac{da}{2^r \left(a + \sum_{i=1}^r |\theta_i| + \sum_{i=r+1}^d \theta_i\right)^{d+1}}$$

EXAMPLE 1: WEIBULL DISTRIBUTION

We consider $X \sim$ Weibull(θ , β) and draw 250 independent samples of size *n* for $\theta = 1$ and $\beta = \{0.5, 1, 100\}$ (see Sun, 1997). We compare our Lomax prior with the reference prior via relative MSE with respect to the posterior mean and coverage for 95% credible intervals

n=30	MSE - β				MSE - θ			
		$\beta = 0.5$	$\beta = 1$	$\beta = 10$		$\beta = 0.5$	$\beta = 1$	$\beta = 10$
	Reference	3.92	3.90	3.91		3.13	3.13	3.12
	Lomax	3.33	3.27	3.21		2.59	2.61	2.69
	COV - β				COV - θ			
		$\beta = 0.5$	$\beta = 1$	$\beta = 10$		$\beta = 0.5$	$\beta = 1$	$\beta = 10$
	Reference	0.90	0.91	0.91		0.91	0.92	0.91
	Lomax	0.91	0.91	0.90		0.95	0.96	0.96
n=100	MSE - β				MSE - θ			
		$\beta = 0.5$	$\beta = 1$	$\beta = 10$		$\beta = 0.5$	$\beta = 1$	$\beta = 10$
	Reference	1.85	1.86	1.94		1.36	1.37	1.37
	Lomax	1.77	1.75	1.76		1.29	1.29	1.30
	$COV - \beta$				$COV - \theta$			
		$\beta = 0.5$	$\beta = 1$	$\beta = 10$		$\beta = 0.5$	$\beta = 1$	$\beta = 10$
	Reference	0.94	0.95	0.94		0.94	0.93	0.94
	Lomax	0.93	0.93	0.92		0.95	0.94	0.94

17/22

EXAMPLE 1: WEIBULL DISTRIBUTION

Single sample results on real data: n = 19 times to breakdown (minutes) of an insulating fluid between electrodes at a voltage of 34 KV (see Ellah, 2012)

Observations:

0.96	4.15	0.19	0.78	8.01	31.75	7.35	6.50	8.27	33.91
32.52	3.16	4.85	2.78	4.67	1.31	12.06	36.71	72.89	

Posterior summaries:

Reference				Lomax			
	Mean	Variance	95% C.I.	Mean	Variance	95% C.I.	
θ	0.8	0.02	(0.55,1.10)	0.73	0.02	(0.48,1.02)	
β	16.84	44.93	(8.51,31.89)	11.11	15.08	(5.07,20.36)	

→ Maximum likelihood estimates: $\hat{\theta} = 0.77$ and $\hat{\beta} = 12.22$

э

EXAMPLE 2: LINEAR REGRESSION

We consider 250 independent samples of size n = 100 from a linear regression model with two covariates, coefficients $\beta = (20, 10, -1)$ and variance $\sigma^2 = 2$. We compare our Lomax prior with a vague prior and Zelner's g prior via MSE with respect to the maximum a posteriori and coverage for 95% credible intervals

		MSE		COV		
Parameter	Lomax	Vague	Zellner's g	Lomax	Vague	Zellner's g
β_0	0.998	0.998	0.998	0.95	0.94	0.95
β_1	1.000	1.000	1.000	0.97	0.96	0.97
β_2	1.001	1.002	1.001	0.97	0.98	0.98
σ^2	1.098	1.095	1.094	0.93	0.92	0.92

EXAMPLE 2: LINEAR REGRESSION

Single sample results on simulated data: sample of size n = 100 from the linear regression model with intercept $\beta_0 = 20$, coefficients $\beta_1 = 10$ and $\beta_2 = -1$, and variance $\sigma^2 = 2$

Posterior histograms:

Posterior summary:

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

THANK YOU!

REFERENCES

- James O. Berger, José M. Bernardo, and Dongchu Sun. The formal definition of reference priors. *The Annals of Statistics*, 37:905–938, 2009.
- Ahmed H.A. Ellah. Bayesian and non-bayesian estimation of the inverse weibull model based on generalized order statistics. *Intelligent Information Management*, 4:23–31, 2012.
- Dennis V. Lindley and Nozer D. Singpurwalla. Multivariate distributions for the life lengths of components of a system sharing a common environment. *Journal of Applied Probability*, 23 (2):418–431, 1986.
- Tapan Kumar Nayak. Multivariate lomax distribution: Properties and usefulness in reliability theory. *Journal of Applied Probability*, 24(1):170–177, 1987.
- Matthew Parry, A. Philip Dawid, and Steffen Lauritzen. Proper local scoring rules. *The Annals of Statistics*, 40(1):561 592, 2012.
- Dongchu Sun. A note on noninformative priors for weibull distributions. *Journal of Statistical Planning and Inference*, 61:319–338, 1997.
- Stephen G. Walker and Cristiano Villa. An objective prior from a scoring rule. *Entropy*, 23(7), 2021.
- A. Zellner. On Assessing Prior Distributions and Bayesian Regression Analysis with g Prior Distributions. In Goel, P.; Zellner, A. (eds.). Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti. Studies in Bayesian Econometrics and Statistics. Vol. 6., pages 233–243, 1986.