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LETS START AT THE VERY BEGINNING...

The starting point is a parameter of interest, say θ ∈ Θ ⊂ Rd , indexing a family of probability
distributions f (x |θ).

The Bayesian framework requires the specification of a prior q(θ) supported on Θ.

In general, there are two options:
• Elicit the prior on the basis of prior information
• Use an objective prior, in the absence of information

Common objective approaches for the definition of priors are:
• Jeffreys prior
• Reference prior

Both of these depend on f (x |θ)

I. Antoniano-Villalobos 10 September 2022 2 / 22



LETS START AT THE VERY BEGINNING...

Common objective prior approaches have known drawbacks and limitations:

• While they tend to be proper for bounded parameter spaces, e.g. Θ = (0, 1), they are often
improper for Θ = (0, ∞) and Θ = (−∞, ∞).

• For large or complex models, it is difficult to check posterior properness.

• Even for not-so-large models, prior independence is often assumed, to avoid issues when
defining multivariate objective priors

OUR AIM: Finding objective priors for multiple parameters which are proper, heavy tailed and
do not require an independence assumption
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FIRST INGREDIENT: DIFFERENTIAL EQUATIONS

Objectivity and scoring rules
Fabrizio Leisen, Cristiano Villa, Stephen G. Walker (2020). On a class of objective priors from
scoring rules (with discussion). Bayesian Analysis 15, 1345–1523

IDEA: For Θ ⊂ R, define the prior as the solution to the differential equation

S(q, q′, q′′) = 0,

where
• S is a scoring rule defined as a a weighted sum of the log-score and the Hyvärinen score
• q is the density of a possible prior for θ with q′ and q′′ the first two derivatives

The resulting prior has some interesting properties:
• It depends on Θ but not on f (x |θ)
• By design, it is convex, proper, decreasing (and other desirable features)
• It minimizes a particular information criterion
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SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Divergences, Informations and Scores are connected:

D(p, q) = I(p) +
∫

p S(q)

For example:
• Kullback-Leibler divergence, Shannon entropy and log-score∫

p log(p/q) = p log p +
∫

p (− log q)

• Fisher Information divergence, Fisher information and Hyvärinen score∫
p(p′/p − q′/q)2 =

∫
(p′/p)2 +

∫
p [2q′′/q − (q′/q)2]
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SECOND INGREDIENT: DIVERGENCES, INFORMATIONS, SCORES

Proper scoring rules from Bregman divergences
Matthew Parry, M., A. Philip Dawid, Steffen Lauritzen (2012). Proper local scoring rules.
Annals of Statistics 40, 561–592

Idea: Exploit the relation between D, I and S to define new scoring rules by choosing different
divergences. In particular, considering the family of Bregman divergences:

D(p, q) =
∫

Bϕ(p, q); Bϕ(p, q) = ϕ(p) − ϕ(q) − ϕq(q)(p − q)

for a convex function ϕ : R+ → R, where ϕq(q) denotes the derivative dϕ(q)
dq

For example:
• If ϕ(u) = u log u, Bϕ is the Kullback-Leibler divergence
• If ϕ(u) = u2, Bϕ is the L2 norm
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THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

Objective priors from scoring rules derived from 2-dimensional Bregman divergences
Stephen G. Walker, Cristiano Villa (2021). An Objective Prior from a Scoring Rule. Entropy 23,
833.

Idea: Consider a 2-dimensional Bregman divergence:

D(p, q) =
∫

Bϕ(p, q); Bϕ(p, q) = ϕ(p) − ϕ(q) − ϕq(q)(p − q) − ϕqθ (q)(pθ − qθ)

for a convex function ϕ : R2
+ → R, where p = (p, pθ), p = (q, qθ),

qθ(θ) =
dq(θ)

dθ
; ϕq(q) =

∂ϕ(q)
∂q

; ϕqθ (q) =
∂ϕ(q)
∂qθ

For example:
• If ϕ(u, v ) = v2/u, Bϕ is the Fisher information divergence

 In general, consider, ϕ(u, v ) = u α(v/u), which is convex whenever α : R → R is convex
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THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

After some manipulation and assuming boundary conditions at the integration limits, the
relation between D, I and S can be recovered:∫

Bϕ(p, q) =
∫

p α(pθ/p) +
∫

p
[

d
dx

αu(qθ/q) − α(qθ/q) + (qθ/q)αu(qθ/q)
]

,

where αu denotes the derivative dα(u)
du

The score S(q) = S(q, qθ, qθθ)

S(q) =
d
dθ

αu(qθ/q) − α(qθ/q) + (qθ/q)αu(qθ/q)

= αuu(qθ/q)
qqθθ − q2

θ

q2 − α(qθ/q) + (qθ/q)αu(qθ/q)

is called an order-2 local score or 2-local score, since it depends on the distribution only
through the density q and its first two derivatives qθ and qθθ , evaluated at the local point θ

 An objective prior for θ is defined as the solution to the differential equation

S(q, qθ, qθθ) = 0
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THIRD INGREDIENT: PRIORS DERIVED FROM BREGMAN 2-LOCAL SCORES

Example: Let α(u) = u−2, thus ϕ(p) = pα(pθ/p) = p3/p2
θ and

S(q) = 3
(

q
qθ

)2 [
2q qθθ

q2
θ

− 3
]

Solving S(q) = 0 results in a prior

q(θ) =
a

(a + θ)2 , θ ∈ [0, ∞)

 This is a Lomax distribution with scale a > 0 and shape k = 1
• Heavy-tailed distribution related to the generalized Pareto
• Eq [θ] = ∞
• q(θ) is decreasing and convex
• Invariance to the transformation t(θ) = 1/θ holds iif a = 1

 A prior with similar properties for θ ∈ Θ = (−∞, ∞) can be obtained through
symmetrization:

q(θ) =
a

2(a + |θ|)2
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OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

We begin with the prior for θ ∈ [0, ∞):

q(θ) =
a

(a + θ)2 i.e. θ ∼ L(a, 1)

and consider a second parameter τ ∈ [0, ∞)

 Definition of the joint prior for (θ, τ ) ∈ [0, ∞)2 requires the definition of q(τ |θ):
• If the support of τ is [0, ∞) for all θ, q(τ |θ) should also be a Lomax distribution
• If a priori independence is not assumed, the parameters of q(τ |θ) may depend on θ, thus

q(τ |θ) =
ã(θ)k̃ (θ)k̃ (θ)

(ã(θ) + τ )k̃ (θ)+1
i.e. τ |θ ∼ L

(
ã(θ), k̃ (θ)

)
• The joint prior should not depend on the order in which the two parameters are

considered. In other words,
q(θ)q(τ |θ) = q(τ )q(θ|τ )
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OUR PROPOSAL: A PRIOR FOR A 2-DIMENSIONAL PARAMETER

By symmetry, τ and θ should have the same marginal distribution and the following equality
should hold

a
(a + θ)2

ã(θ)k̃ (θ)k̃ (θ)
(ã(θ) + τ )k̃ (θ)+1

=
ã

(ã + τ )2

a(τ )k (τ )k (τ )
(a(τ ) + θ)k (τ )+1

This is achieved iif k (τ ) = k̃ (θ) = 2, a = ã, ã(θ) = a + θ and a(τ ) = a + τ .

The joint prior for (θ, τ ) ∈ [0, ∞)2 is therefore

q(θ, τ ) =
2a

(a + θ + τ )3

 This is a bivariate Lomax distribution with scale a > 0 and shape k = 1
• Heavy-tailed distribution related to the bivariate generalized Pareto
• Eq [θ] = Eq [τ ] = ∞ but Eq [θ] = a + θ, Eq [τ ] = a + τ

• q(θ, τ ) is decreasing and convex
• Invariance to the transformation t(θ, τ ) = (1/θ, 1/τ ) holds iif a = 1

 A prior with similar properties for (θ, τ ) ∈ Θ = (−∞, ∞) × [0, ∞) can be obtained through
symmetrization:

q(θ, τ ) =
a

(a + |θ| + τ )2
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PRIOR DERIVATION FROM BREGMAN 2-LOCAL SCORES

Consider a 3-dimensional Bregman divergence:

D(p, q) =
∫

Bϕ(p, q);

Bϕ(p, q) = ϕ(p) − ϕ(q) − ϕq(q)(p − q) − ϕqθ (q)(pθ − qθ) − ϕqτ (q)(pτ − qτ )

for a convex function ϕ : R3
+ → R, where p = (p, pθ, pτ ), p = (q, qθ, qτ ),

qθ(θ, τ ) =
∂q(θ, τ )

∂θ
; qτ (θ, τ ) =

∂q(θ, τ )
dτ

;

ϕq(q) =
∂ϕ(q)

∂q
; ϕqθ (q) =

∂ϕ(q)
∂qθ

; ϕqτ (q) =
∂ϕ(q)
∂qτ
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PRIOR DERIVATION FROM BREGMAN 2-LOCAL SCORES

The resulting bivariate 2-local score is

S(q) = −ϕq(q) +
∂ϕqθ (q)

∂θ
+

∂ϕqτ (q)
∂τ

= 4
(

q
qθ

)3 [
3q qθθ

q2
θ

− 4
]

+ 4
(

q
qτ

)3 [
3q qττ

q2
τ

− 4
]

Solving S(q) = 0, under symmetry conditions, results in a prior

q(θ, τ ) =
2a

(a + θ + τ )3

 Once again, this is a bivariate Lomax distribution with scale a > 0 and shape k = 1:

(θ, τ ) ∼ L2(a, k )
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IN DIMENSION d ≥ 2

In general, for θ = (θ1, ... , θd ) ∈ [0, ∞)d we consider the Bregman divergence of dimension
d + 1 induced by

Bϕ(p, q) = ϕ(p) − ϕ(q) − ϕq(q)(p − q) −
d∑

i=1

ϕqi (q)(pi − qi )

for a convex function ϕ : Rd+1
+ → R, where p = (p, p1, ... , pd ), p = (q, q1, ... , qd ),

qi (θ) =
∂q(θ)

∂θi
; ϕq(q) =

∂ϕ(q)
∂q

; ϕqi (q) =
∂ϕ(q)
∂qi

We let

ϕ(p) = pα

(
p1

p
, ...

pd

p

)
for

α(u) =
d∑

i=1

u−(d+1)
i ; u = (u1, ... , ud )
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IN DIMENSION d ≥ 2

The resulting multivariate 2-local score is

S(q) = −ϕq(q) +
d∑

i=1

∂ϕqi (q)
∂θi

= (d + 2)
d∑

i=1

(
q
qi

)d+1 [
(d + 1)q qii

q2
i

− (d + 2)
]

,

where

qii (θ) =
∂2q(θ)

∂θ2
i

Solving S(q) = 0 we obtain the joint prior for θ = (θ1, ... , θd ) ∈ [0, ∞)d ,

q(θ) =
da(

a +
∑d

i=1 θi

)d+1

 This is a multivariate Lomax distribution with scale a > 0 and shape k = 1:

θ ∼ Ld (a, k )
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IN DIMENSION d ≥ 2

The same prior can be obtained by the conditional construction, sequentially deriving
q(θi+1|θ1, ... , θi ), and

θi+1|θ1, ... , θi ∼ L
(
a +

i∑
j=1

θj , i + 1)

 For a Lomax distribution L(a, k ):
• The larger the shape parameter, the ”lighter” the tail:

The expectation is finite whenever k > 1

The variance is finite whenever k > 2

 Intuitively, while the joint prior is heavy tail, it does not assign ”too much” mass on the tails
of the multivariate distribution

The joint prior for θ = (θ1, ... , θd ) ∈ (−∞, ∞)r × [0, ∞)d−r can be obtained by
symmetrization:

q(θ) =
da

2r
(

a +
∑r

i=1 |θi | +
∑d

i=r+1 θi

)d+1
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EXAMPLE 1: WEIBULL DISTRIBUTION

We consider X ∼ Weibull(θ, β) and draw 250 independent samples of size n for θ = 1 and
β = {0.5, 1, 100} (see Sun, 1997). We compare our Lomax prior with the reference prior via
relative MSE with respect to the posterior mean and coverage for 95% credible intervals

n=30 MSE - β MSE - θ
β = 0.5 β = 1 β = 10 β = 0.5 β = 1 β = 10

Reference 3.92 3.90 3.91 3.13 3.13 3.12
Lomax 3.33 3.27 3.21 2.59 2.61 2.69

COV - β COV - θ
β = 0.5 β = 1 β = 10 β = 0.5 β = 1 β = 10

Reference 0.90 0.91 0.91 0.91 0.92 0.91
Lomax 0.91 0.91 0.90 0.95 0.96 0.96

n=100 MSE - β MSE - θ
β = 0.5 β = 1 β = 10 β = 0.5 β = 1 β = 10

Reference 1.85 1.86 1.94 1.36 1.37 1.37
Lomax 1.77 1.75 1.76 1.29 1.29 1.30

COV - β COV - θ
β = 0.5 β = 1 β = 10 β = 0.5 β = 1 β = 10

Reference 0.94 0.95 0.94 0.94 0.93 0.94
Lomax 0.93 0.93 0.92 0.95 0.94 0.94
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EXAMPLE 1: WEIBULL DISTRIBUTION

Single sample results on real data: n = 19 times to breakdown (minutes) of an insulating fluid
between electrodes at a voltage of 34 KV (see Ellah, 2012)

 Observations:

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91
32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89

 Posterior summaries:

Reference Lomax
Mean Variance 95% C.I. Mean Variance 95% C.I.

θ 0.8 0.02 (0.55,1.10) 0.73 0.02 (0.48,1.02)
β 16.84 44.93 (8.51,31.89) 11.11 15.08 (5.07,20.36)

 Maximum likelihood estimates: θ̂ = 0.77 and β̂ = 12.22
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EXAMPLE 2: LINEAR REGRESSION

We consider 250 independent samples of size n = 100 from a linear regression model with two
covariates, coefficients β = (20, 10, −1) and variance σ2 = 2. We compare our Lomax prior
with a vague prior and Zelner’s g prior via MSE with respect to the maximum a posteriori and
coverage for 95% credible intervals

MSE COV
Parameter Lomax Vague Zellner’s g Lomax Vague Zellner’s g

β0 0.998 0.998 0.998 0.95 0.94 0.95
β1 1.000 1.000 1.000 0.97 0.96 0.97
β2 1.001 1.002 1.001 0.97 0.98 0.98
σ2 1.098 1.095 1.094 0.93 0.92 0.92
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EXAMPLE 2: LINEAR REGRESSION

Single sample results on simulated data: sample of size n = 100 from the linear regression
model with intercept β0 = 20, coefficients β1 = 10 and β2 = −1, and variance σ2=2

Posterior histograms:
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Posterior summary:

Median 95% C.I.
β0 20.15 (19.84, 20.47)
β1 10.05 (9.96, 10.14)
β2 -1.02 (-1.10, -0.94)
σ2 2.41 (1.83, 3.26)
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THANK YOU!
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